

Section 1: Technical Introduction and Orientation

Presented by
Kenol Jules
PIMS Project Scientist
NASA Glenn Research Center

Introduction

Microgravity Environment Interpretation Tutorial (MEIT)

· Purpose:

 Convey significant features of the microgravity acceleration environment to the microgravity Principal Investigator teams and other interested parties.

Content:

- Acceleration Measurement Systems
- Advanced Acceleration Systems (SAMS-FF)
- Basics of Signal Processing
- Analysis Techniques for Quasi-Steady Data
- Analysis Techniques for Vibratory Data
- Microgravity Environment of Non-orbital Platforms
- Highlights of the Microgravity Environment of the Orbiters and Mir
- Implications for Microgravity Experimenters
- ISS Acceleration Environment Predictions
- PIMS Space Station Operation
- ISS Acceleration Data Flow Demo
- Vibration Isolation Techniques
- Predicting Residual Acceleration Effects on Space Experiments
- Impact of the Microgravity Environment on Experiments

What is a "microgravity environment"?

What is a "microgravity environment"?

What causes these accelerations?

What is a "microgravity environment"?

- Major properties
 - What causes these accelerations?
 - How can we display it?

Components of the Microgravity Environment

What does all this mean to me?

- The environment is NOT "zero-g"!
- Experiments may be affected by the microgravity environment
- This tutorial will explain what the environment is, how we measure it, how we explain it to you, and show what impacts the environment has had on some experiments.

Acceleration Measurement Systems (common)

- **SAMS:** Space Acceleration Measurement System instrument which measures accelerations from 0.01 Hz to 100 Hz on Shuttle, Mir, and KC-135. (NASA Glenn)
- SAMS-FF: SAMS for Free Flyers instrument for free flyers (e.g. sounding rockets), Shuttle, and KC-135 which measures linear and roll-rate accelerations. (NASA Glenn)
- **SAMS-II:** Second generation SAMS instrument which will measure accelerations from 0.01 Hz to 400 Hz on ISS (NASA Glenn)
- OARE: Orbital Acceleration Research Experiment instrument which measures low frequency accelerations from DC up to 1 Hz (NASA Glenn)
- **MAMS:** Microgravity Acceleration Measurement System instrument which measures acceleration levels to verify the ISS microgravity environment provided to users (NASA Glenn for JSC)

Important terms

- Consult the tutorial glossary for in-depth explanation of these and other terms
- **g**: an acceleration unit equal to Earth's gravitational acceleration at sea level (nominally 9.8 m/sec²)
- mg (milli-g): an acceleration unit equal to one-thousandth of 1g
- µg (micro-g): an acceleration unit equal to one-millionth of 1g
- reference frame: reference point for observations of effects of the accelerations experienced on microgravity science carriers, typically either an inertial reference or a vehicle reference

Important terms (cont'd)

- microgravity environment: an environment in which the effects of gravity are small compared to those we experience on Earth
- oscillatory: term used to describe vibratory disturbances with frequency content greater than 0.01 Hz
- transient: signals that are impulsive in nature; passing quickly into and out of existence
- quasi-steady: a signal which varies at a very low frequency, typically below 0.01 Hz

Important terms (cont'd)

- Nyquist criteria: sampling rate must be at least twice that of the highest frequency contained in the signal of interest
- **cutoff frequency (f_c):** corner frequency in filter response; highest unfiltered frequency of interest
- sample rate (f_s): rate at which an analog signal is sampled (samples/sec)
- power spectral density: a function that quantifies the distribution of power in a signal with respect to frequency
- spectrogram: a 3-D representation of the power spectral density as a function of time

SAMS Plot Information

OARE Plot Information

Plot Examples

MEIT-99 / Section 1 / Page 14

Spectrogram (acceleration vs. frequency vs. time)
Shuttle/Mir docking

Orbiter Coordinate Systems

- Body coordinate system
 - origin at vehicle center of mass

Orbiter Coordinate Systems (cont'd)

Structural coordinate system

Orbiter Attitudes

- Orbiter has two main attitudes
 - Local vertical / local horizontal (Earth oriented)
 - Inertial (quite often sun oriented)
- Designation of attitudes
 - pitch / yaw / roll angle relative to airplane mode
 - e.g. PYR: 90°, 0°, 90°
 - body axes oriented to nadir (toward Earth) and flight direction
 - e.g. -XLV / +YVV

MEIT-99 / Section 1 / Page 18

Frame of Reference

- Fixed frame of reference determines sense of observed acceleration
 - Inertial reference frame: frame fixed with respect to inertial space
 - · Science reference frame: frame fixed with respect to vehicle

References

- DeLombard, R.: "Compendium of Information for Interpreting the Microgravity Environment of the Orbiter Spacecraft." NASA TM-107032, 1996.
- Rogers, M. J. B., Hrovat, K., McPherson, K., Moskowitz, M. E., and Reckart, T.: Accelerometer Data Analysis and Presentation Techniques, NASA TM-113173, September 1997.
- DeLombard, R.; McPherson, K.; Hrovat, K; Moskowitz, M.; Rogers, M. J. B.; and Reckart, T.: Microgravity Environment Description Handbook, NASA TM-107486, 1997.
- Sutliff, T. J.: Requirements and Development of an Acceleration Measurement System for International Space Station Microgravity Science Payloads, NASA TM-107484, June 1997.